PHYSICAL REVIEW E 77, 026103 (2008)

Reconstructing the topology of sparsely connected dynamical networks

Domenico Napoletanil’2 and Timothy D. Sauer™™*
1Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030, USA
2Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, USA
(Received 14 September 2007; revised manuscript received 7 December 2007; published 8 February 2008)

Given a general physical network and measurements of node dynamics, methods are proposed for recon-
structing the network topology. We focus on networks whose connections are sparse and where data are
limited. Under these conditions, common in many biological networks, constrained optimization techniques
based on the L1 vector norm are found to be superior for inference of the network connections.
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Network dynamics have recently become ubiquitous as
models of physical and biological behavior [1]. Examples
range from Josephson junction arrays [2], power grids [3],
networks of neurons [4], models of infectious disease [5],
and social networks [6] to a plethora of current examples in
systems biology like genetic networks [7], protein interaction
nets [8], and metabolic networks [9].

Because of the strong emphasis on network models, a
great need exists for methods of inferring network structure
from data. Topological information has influence over the
dynamical behavior [10] and, in particular, has been used to
great effect in the study of network synchronization [ 11-14].

We will assume that time series measurements are avail-
able at some or all of the network nodes. The first step to-
ward understanding the system dynamics is to decipher the
network topology by detecting the links between nodes. To-
pological information for an N-node network is contained in
the adjacency matrix, the N X N matrix A whose (i, /) entry is
1 if there is a link from node i to node j and O otherwise.
Inferring the network topology from data is in general an
ill-posed problem. Factors that increase the difficulty of this
task are nonlinearity, large noise, and lack of data. Each of
these factors is notably present in biophysics and system
biological applications.

Methods for detecting links based on observed data have
been proposed in the recent literature. A method based on
chaotic synchronization was proposed and demonstrated
through examples in [15]. In [16], a method based on per-
turbing the dynamics was proposed and applied to a phase
oscillator network. Neither of these methods was evaluated
in the presence of noisy signals. In our opinion, noise will be
pervasive in any proposed application of these methods and
the handling of noise will be an important factor in a method
that successfully disentangles the network structure from ob-
served data.

In this article we introduce a method for reconstructing
dynamic network topology in the presence of significant
noise and low data availability, under the assumption of
sparse connectivity. By sparse we mean around 10% of pos-
sible connections between nodes, although the method will
often succeed with lesser accuracy for higher connectivity
rates. Figure 1 shows a typical 10%-connected sparse net-
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work of discrete-time dynamics that undergoes sustained
chaotic behavior.

We apply techniques that have proved useful for time se-
ries analysis of chaotic systems. Takens [17] showed that the
phase space of autonomous systems can be reconstructed
from time series measurements, using what has come to be
known as the delay-coordinate method (see also [18,19]). Tt
has been widely exploited for noise reduction [20] and time
series prediction [21] of chaotic time series. In the present
context, we assume a network of autonomous systems to
which a sparse set of connections has been added. Further,
we assume that a generic observable of each system is avail-
able, creating a multivariate time series. Our work on the
present problem is complementary to previous work on more
complete reconstruction problems in small networks with
high data coverage [22]; in fact, the use of delay coordinates
is not a requirement for the method presented in this article.

To deal with the nonlinearity of the system dynamics, we
will work locally in phase space, using linearization of the
dynamics around the center of a neighborhood of data points.
Small neighborhoods in high-dimensional spaces contain
relatively few points. Therefore, for low data rates it is es-
sential to replace the least-squares methodology of those
methods with recent ideas from nonlinear signal processing
involving minimization with respect to the L1 norm. We will
explain why this methodology is appropriate for sparse net-
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FIG. 1. (Color online) Connection diagram of system. The sys-
tem is sparsely connected; each node has three incoming connec-
tions from other nodes.
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FIG. 2. (Color online) Isoclines of the L1 norm. The minimum-
norm point on a linear space tends to have relatively few nonzero
coordinates, making L1 minimization effective for computing
sparse solutions.

work inference and demonstrate its superiority to the least-
squares approach.

We begin by investigating the properties of the L1 mini-
mization in the simplest possible case. Let X be an mXn
matrix, ¢ an n vector, and b=Xc. Add observation noise to X
and b, and consider the problem of estimating the value of ¢

from the noisy X and b. To correspond to the stated context,
we will assume that (i) ¢ is a sparse vector—i.e., most of its
entries are zero—and (ii) the number m, corresponding to the
number of observations, is small. We do not assume known
which entries of ¢ are nonzero.

The method of L2 minimization, using the ordinary least-
squares (OLS) or total least-squares (TLS) methodology, is

the classical answer to this problem. If X =X and the noise is
only in b, then the maximum likelihood unbiased estimate is
c=X"'b, where X is the pseudoinverse [23] of the rectangular
matrix X. (The computation of ¢ is best done indirectly using
techniques of orthogonal matrices that avoid the explicit con-
struction of the pseudoinverse.) If X is noisy as well, the
so-called ‘“‘errors-in-variables” scenario, then the TLS
method is preferred to the OLS method in theory and finds a
more accurate solution in the limit of large m. However, in
practice, and in particular in the case of limited data, the
OLS method often outperforms the TLS method [24,25]
even in situations involving errors in variables.

Next we show that there are even better alternatives if c is
a sparse vector. First, we increase the number of variables in
the system by adding columns of random numbers to X,
enough to make the system underdetermined (m<n). The
augmented system X'c’=b now has infinitely many solutions
composing a linear hyperplane in n-dimensional space. For
the solution ¢, choose the point on this set of minimum L1
norm. The L1 norm of a vector is the sum of the absolute
values of its coordinates. Figure 2 shows that in the plane,
the point on a one-dimensional linear space of minimum L1
norm generally lies on a coordinate axis—i.e., has at least
one coordinate equal to zero. More generally, on a linear
space defined by a general m equations in n-dimensional
space, the point of the minimum L1 norm must have at least
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FIG. 3. Error in reconstructing coefficients versus the number of
data points: (a) 10% sparsity and (b) 20% sparsity.

m zero coordinates. This is the reason that the method tends
to favor sparse vectors as solutions. Once the solution ¢’ of
the augmented system is found, the extra coordinates of ¢’
are ignored to give the solution c.

Calculation of a minimum L1 norm point can be done
using general-purpose optimization software as follows.
Given the system of equations X'c¢’=b, consider the alternate
system

[X’—X’]{?} =b. (1)

Here ¢, (c_) is playing the role of the positive (negative) part
of ¢’, so that the sum of the coordinates of ¢, and c_ is equal
to the sum of the absolute values of the coordinates of ¢, the
L1 norm. Solve the classical optimization problem of mini-
mizing the sum of the coordinates of the vector [¢/c] with
respect to equality constraints (1) and inequality constraints
¢,=0,c_=0. Then the minimum LI norm point is c=c,
—c_. Several algorithms exist for constrained optimization; in
the following calculations, we use LIPSOL [28], a primal-dual
interior point method in general distribution.

Figure 3 shows a comparison of the error in reconstruct-
ing the original vector ¢ when using the classical L2 least-
squares (OLS) method and the proposed L1 minimization
method. After b=Xc is calculated, 50% Gaussian noise is
added to both X and b. Then 120 random vector columns are
added to augment the matrix. These entries are Gaussian
random numbers of standard deviation 0.5. Then LIPSOL is
used as above to solve for c. The root-mean-squared error
(RMSE) is averaged over 1000 realizations of random m
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X 30 matrices X of normal random numbers of unit standard
deviation. (The standard error bars are within the size of the
symbol shown.) The results in Fig. 3 show that for sparse ¢
and limited data, the L1 method is far superior to the OLS
method. The results using the TLS method are markedly in-
ferior for these relatively small values of m and are not
shown. As the number of nonzero entries in ¢ grows and as
the amount of available data grows, the L2 method becomes
competitive and will eventually dominate.

The alternative method depending on L1 minimization
was motivated by recent work on sparse representation of
signals using overcomplete systems [26,27]. In their work, a
large basis of possible signal terms is used; in our applica-
tion, the matrix X is given to us from the time series data,
and we explicitly add extra random vectors to the basis to
absorb noise and model error in the data.

Now we turn to the application of these ideas to the cha-
otic network of Fig. 1. Assume that time series can be re-
corded from the network nodes. We will work in the proxy
phase space of the network, reconstructed from time series.
Choose one data point x’, from the phase space at time # and
form the neighborhood of N nearest data points from the
collected multivariate time series. For the ith coordinate, let
the dynamics at time step ¢ be expressed in a Taylor series
expansion around x% as

3 = () + DE) (=) + O =2tP). (2)
The higher-order terms are of size ||x{—x’|[* and therefore will
depend sensitively on the size of the neighborhood. The
smaller the neighborhood, the smaller the higher-order terms
and the more accurate the linear terms will be in approximat-
ing the dynamics F;, but the fewer points will be available
for fitting the linear terms accurately. This is the reason that
the fitting method must be as efficient as possible and why
the L1 method described above is essential in low-data situ-
ations. We begin by estimating the constant term and linear
coefficients in (2) by the linear system Xc=b, where c¢ rep-
resents the unknown coefficients and the number of equa-
tions (rows of the matrix X) is the number of data points in
the neighborhood. Then we apply the method of L1 minimi-
zation to solutions of Eq. (1) after augmenting the matrix
with random columns, as described above.

The computation of the ith column of the adjacency ma-
trix A is done by thresholding the estimated linear coeffi-
cients for F; in the local neighborhoods. An estimated linear
coefficient whose absolute value exceeds the threshold in
more than 25% of the neighborhoods is accepted as a link in
the network. The threshold can be chosen using any of a
number of heuristic arguments. In the studies below the
threshold was set to make the false positive rate approxi-
mately 5% for purposes of comparison of the alternative ap-
proaches.

In Fig. 4 we display results for the discrete dynamical
system

N
x?—l =C; + E aij Ccos bl]X; (3)
Jj=1

for i=1,...,N. For this test, the number of nodes is N=30
and 10% of the adjacency matrix entries a;; were set to 1; the
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FIG. 4. True positive rate for example system (3). The upper
pair of traces use single trajectories of length 200 (400) points and
apply the L1 optimization technique from the text. The mean TPR
over 40 trajectories is shown. The lower pair of traces are the same,
but using the ordinary least-squares approach.

remainder were set to 0. The coefficients ¢; were chosen
randomly from the standard normal distribution N(0, 1) and
fixed for the simulation run. The b;; were chosen similarly
from N(0.88,0.4), to avoid nongeneric results caused by
symmetries in the dynamics. Under these conditions, the net-
work develops a chaotic attractor whose Lyapunov dimen-
sion [20] is approximately 8.2. The initial conditions for the
trajectory that provided data were also chosen randomly. On
top of the chaotic dynamics, observational noise of o times
the standard deviation of the time series was added, where o
ranged from O to 0.25, as shown in the figure. The method
was applied to noisy trajectories of length 200 and 400.

The true positive rate (TPR) is defined to be the number
of correct detected links divided by the total links in the
network. The false positive rate (FPR) is the number of in-
correctly detected links divided by the total number of non-
links. Figure 4 compares the TPR for varying amounts of
time series data, while the FPR is held constant near 5% by
choice of threshold. The data points of this simulation are
averages of 40 simulations. In each simulation, 40 local
neighborhoods were used to group points and carry out the
linearizations.

Note that the TPR declines as the noise increases and the
availability of data declines. Figure 4 shows the relative in-
effectiveness of the ordinary least-squares method for this
purpose, as predicted by the above discussion and Fig. 3.
Again, the results of link detection using the total least-
squares method were inferior to the results for the ordinary
least-squares method.

As the data availability increases, the effectiveness of the
L1 optimization method and the ordinary least-squares
method grow similar, and true positive rates of both ap-
proach 100% for sufficient data.

We note that although the method is illustrated with a
single trajectory from a chaotic, ergodic system, the fact that
the dynamics is chaotic is not a requirement for the method
to be successful. In fact, several shorter trajectories can be
used. The method will be more accurate to the degree that
data acquired are representative of the phase space of the
system whether the system is ergodic or not.

Figure 5 shows corresponding results for an example with
higher-dimensional dynamics. Each node consists of the
Hénon-like [29] two-dimensional system
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FIG. 5. True positive rate for example system (4). Settings are
similar to those in Fig. 4. The circles denote the use of the L1
technique described in the text. The squares denote the use of the
ordinary least-squares approach.

N
X = cos(1.2x) + 135y + 2 ayby; sin(x! + y1),
j=1

it =) + diyl, )
where the b;; are chosen randomly (but fixed for each trajec-
tory) from the normal distribution N(0.18,0.1) and ¢; and d;
are chosen from N(0.75,0.03) and N(-0.65,0.03), respec-
tively. For purposes of comparison, the same adjacency ma-
trix A, represented in Fig. 1, was used in the network. There
is again a chaotic attractor present in the 60-dimensional
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phase space, of much higher dimension than system (3).
Noise was added to the signal x measured from each of the
nodes as in Fig. 4. The trajectories of a few hundred data
points are clearly inadequate for complete resolution of the
adjacency matrix in this example. Even in this case, how-
ever, the best results are given by the L1 method.

The application of L1 techniques to sparse signal process-
ing problems is under intense development due to the pio-
neering work of [26,27]. We have customized the basic idea
to the context of network dynamics and found that the use of
extra random vectors enhances the resolution of the adja-
cency matrix. It is interesting to speculate on the effect of
these random vectors, which are added to the matrix prior to
the L1 optimization. In addition to reducing the condition
number of the calculation, they evidently take up the noise
and distribute it in small quantities among the random vec-
tors.

The method we have outlined for detecting links in a
sparsely connected chaotic dynamical network is surpris-
ingly robust in the case of small data sets. Asymptotically, as
the data coverage increases, the difference between the L1
optimization and L2 regression disappears. We expect the
method to have great value for large networks, in particular
metabolic and genomic pathways, where data are expensive
and difficult to gather.
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Foundation.
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